Work in progress.
Ligases are inhibited by high concentrations of ATP (Tessier, Brousserau & Vernet, 1986 and many others).
On T4 RNL1:
- Using poly-A as substrate for circularisation, minimal length is 8, optimal is 10, and then efficiency decreases slowly (Kaufmann, Klein & Littauer, 1974).
- Adenylated RNA is a better substrate for T4 RNA ligase. Adenylation efficiency after 6h: C >> U ~ A > G (McLaughlin et al., 1985).
- Also used for single-strand DNA ligation (Tessier, Brousserau & Vernet, 1986) with PEG and hexamine cobalt chloride (HCC) as additives.
- Can dephoshporylate RNA 3′ ends (Krug & Uhlenbeck, 1982).
On T4 RNL2:
- Primary paper: Ho et al., 2002.
- Functional residues analysed by Yin et al., 2003.
- The truncated Rnl2 was published by Ho et al., 2004.
- Ligation of RNA to a DNA acceptor is very weak (Yin et al., 2004).
- The RNA acceptor strand participates to its ligation by promoting adenylylation of the donor, and by promoting the formation of the phosphodiester bond. With DNA, this step is 35 times slower (Nandakumar et al., 2005).
- The K227Q mutation prevents transfer of the andenylyl residue from the linker to RNA ends, thus prevents unwanted ligation products (Viollet et al., 2011).
DNA and RNA ligases can be used to adenylylate a substrate.
- McLaughlin, Piel and Graeser (1985) noted that adenylylated RNA is a better substrate for T4 RNA ligase, and that adenylylation efficiency after 6h was C » U ~ A > G.
- Hoffmann and McLaughlin (1987) used T4 RNL 1 to adenylylate RNA, and noted that ssNpR(A) are good acceptors, and pCpN are good donors.
- Wang and Unrau (2002) noted that purified recombinant ligase can be partly adenylylated, which blocks the reaction on pre-adenylylated substrates. Pre-incubation with pyrophosphate can displace AMP moiety. Commercial ligases are reported to contain mostly non-adenylylated proteins.
- Ho, Wang, Lima and Shuman (2004) reported the use of RNL(1-249) on pre-adenylylated RNA in absence of ATP for avoiding concatemerisation.
- Silverman (2004) reported the use a complementary DNA oligonucleotide (leaving 3-4 protruding 5'ribonucleotides) when adenylylating with T4 RNL 1.
- Torchia, Takagi and Ho (2008) reported the use of the Methanobacterium RNA ligase (MthRnl) to adenylylate RNA.
Sequence biases
(work in progress)
- Potapov and coll. (2018) studied in details the tolerance to mismatches of T4 DNA ligase when ligating 3' overhangs. Mismatches were better tolerated with higher GC content and lower temperature. Surprisingly, TNA overhangs were especially hard to ligate.
Methods using ligases:
(works continuously in progress)
- TACS (terminal deoxyribonucleotidyl transferase (TdT)-assisted adenylate connector-mediated ssDNA) tails DNA with As using the TdT, in order to benefit from the ligase's preference for As (Miura and coll., 2019).
Zhu H and Shuman S.
Nucleic Acids Res. 2007;35(11):3631-45 doi:10.1093/nar/gkm145
Characterization of Agrobacterium tumefaciens DNA ligases C and D.
In presence of Co²⁺, can extend an oligonucleotide on a template using rNTPs.
Nucleic Acids Res. 2019 May 22. pii: gkz435. doi:10.1093/nar/gkz435
Miura F, Shibata Y, Miura M, Sangatsuda Y, Hisano O, Araki H, Ito T.
Highly efficient single-stranded DNA ligation technique improves low-input whole-genome bisulfite sequencing by post-bisulfite adaptor tagging.
Add a A-tail with TdT before ligation, because ligase prefers As.
Nucleic Acids Res. 2018 Jul 27;46(13):e79. doi:10.1093/nar/gky303
Potapov V, Ong JL, Langhorst BW, Bilotti K, Cahoon D, Canton B, Knight TF, Evans TC Jr, Lohman GJS.
A single-molecule sequencing assay for the comprehensive profiling of T4 DNA ligase fidelity and bias during DNA end-joining.
Torchia C, Takagi Y, Ho CK.
Nucleic Acids Res. 2008 Nov;36(19):6218-27. doi:10.1093/nar/gkn602
Archaeal RNA ligase is a homodimeric protein that catalyzes intramolecular ligation of single-stranded RNA and DNA.
Mol Biotechnol. 2002 Nov;22(3):223-30 doi:10.1385/MB:22:3:223
Reddy MK, Nair S, Sopory SK.
Global amplification of cDNA from limiting amounts of tissue. An improved method for gene cloning and analysis.
Ligating a DNA adaptor 3′ to the FScDNA using T4 RNA ligase.
Krug M, Uhlenbeck OC.
Biochemistry. 1982 Apr 13;21(8):1858-64.
Reversal of T4 RNA ligase.
Anal Biochem. 1986 Oct;158(1):171-8.
Tessier DC, Brousseau R, Vernet T.
Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase.
FEBS Lett. 1974 Sep 15;46(1):271-5.
Kaufmann G, Klein T, Littauer UZ.
T4 RNA ligase: substrate chain length requirements.
Nandakumar J, Shuman S, Lima CD.
Cell. 2006 Oct 6;127(1):71-84
RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward.
Viollet S, Fuchs RT, Munafo DB, Zhuang F, Robb GB.
BMC Biotechnol. 2011 Jul 1;11:72. doi: 10.1186/1472-6750-11-72.
T4 RNA Ligase 2 truncated active site mutants: improved tools for RNA analysis
The K227Q mutation prevents transfer of the adenylyl residue from the adapter to unwanted targets.
Nucleic Acids Res. 2004 Jun 17;32(11):e86 doi:10.1093/nar/gnh085
Cole K, Truong V, Barone D, McGall G.
Direct labeling of RNA with multiple biotins allows sensitive expression profiling of acute leukemia class predictor genes.
Nucleic Acids Res. 1979 Sep 25;7(2):453-64.
Hinton DM, Gumport RI.
The synthesis of oligodeoxyribonucleotides using RNA ligase.
Nucleic Acids Res. 1985 Mar 25;13(6):1997-2008.
Rusche JR, Howard-Flanders P.
Hexamine cobalt chloride promotes intermolecular ligation of blunt end DNA fragments by T4 DNA ligase.
HCC (1 mM) promotes intermolecular ligation. This effect is countered by monovalent cations.
Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR.
Science. 2007 Jun 8;316(5830):1484-8 doi:10.1126/science.1138341
RNA maps reveal new RNA classes and a possible function for pervasive transcription.
So AP, Turner RF, Haynes CA.
Nucleic Acids Res. 2004 Jul 6;32(12):e96. doi:10.1093/nar/gnh082
Increasing the efficiency of SAGE adaptor ligation by directed ligation chemistry.
Proc Natl Acad Sci U S A. 1972 Oct;69(10):3009-13.
Silber R, Malathi VG, Hurwitz J.
Purification and properties of bacteriophage T4-induced RNA ligase.
Nucleic Acids Res. 1987 Jul 10;15(13):5289-303.
Hoffmann PU, McLaughlin LW.
Synthesis and reactivity of intermediates formed in the T4 RNA ligase reaction.
Synthesis of adenylated RNA. ssNpR(A) are good acceptors. pCpN are good donors.
McLaughlin LW, Piel N, Graeser E.
Biochemistry. 1985 Jan 15;24(2):267-73.
Donor activation in the T4 RNA ligase reaction.
Nucleic Acids Res. 1978 Oct;5(10):3665-77.
Bruce AG, Uhlenbeck OC.
Reactions at the termini of tRNA with T4 RNA ligase.
Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, Herzog M, Gottwein E, Rajewsky N.
Mol Cell. 2014 Jun 19;54(6):1042-1054. doi:10.1016/j.molcel.2014.03.049
Unambiguous identification of miRNA:target site interactions by different types of ligation reactions.
Endogenous activity (speculated to be tRNA ligase) detected in the negative controls.
J Biol Chem. 1977 Mar 10;252(5):1732-8.
Sugino A, Snoper TJ, Cozzarelli NR.
Bacteriophage T4 RNA ligase. Reaction intermediates and interaction of substrates.
Activation of donors requires 3'OH acceptors. Acceptors can be exchanged.
J Biol Chem. 1996 Jul 26;271(30):17692-6.
Lasken RS, Schuster DM, Rashtchian A.
Archaebacterial DNA polymerases tightly bind uracil-containing DNA.
Blanc V, Alfonzo JD, Aphasizhev R, Simpson L.
J Biol Chem. 1999 Aug 20;274(34):24289-96.
The mitochondrial RNA ligase from Leishmania tarentolae can join RNA molecules bridged by a complementary RNA.
L. tar mitochondrial RNA ligase performs 100x better on nicked dsRNA than T4RNL1.
Biotechniques. 2002 Dec;33(6):1256-60
Wang QS, Unrau PJ.
Purification of histidine-tagged T4 RNA ligase from E. coli.
Ho CK, Shuman S.
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12709-14 doi:10.1073/pnas.192184699
Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains.
J Biol Chem. 2003 May 16;278(20):17601-8 doi:10.1074/jbc.M300817200
Yin S, Ho CK, Shuman S.
Structure-function analysis of T4 RNA ligase 2.
Nucleic Acids Res. 2003 Dec 15;31(24):7247-54 doi:10.1093/nar/gkg914
Blondal T, Hjorleifsdottir SH, Fridjonsson OF, Aevarsson A, Skirnisdottir S, Hermannsdottir AG, Hreggvidsson GO, Smith AV, Kristjansson JK.
Discovery and characterization of a thermostable bacteriophage RNA ligase homologous to T4 RNA ligase 1.
Optimal pH between 6 and 7. Enhanced by 25% PEG 6000 and 1 mM HCC.
Structure. 2004 Feb;12(2):327-39 doi:10.1016/j.str.2004.01.011
Ho CK, Wang LK, Lima CD, Shuman S.
Structure and mechanism of RNA ligase.
Virology. 2004 Feb 5;319(1):141-51 doi:10.1016/j.virol.2003.10.037
Yin S, Kiong Ho C, Miller ES, Shuman S.
Characterization of bacteriophage KVP40 and T4 RNA ligase 2.
RNA. 2004 Apr;10(4):731-46. doi:10.1261/rna.5247704
Silverman SK.
Practical and general synthesis of 5'-adenylated RNA (5'-AppRNA).
J Biol Chem. 2004 Jul 23;279(30):31337-47. doi:10.1074/jbc.M402394200
Nandakumar J, Ho CK, Lima CD, Shuman S.
RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2.
Can ligate RNA at a 3'-OH/5'-P nick in a RNA/RNA or RNA/DNA duplex.
Nandakumar J, Shuman S.
J Biol Chem. 2005 Jun 24;280(25):23484-9. doi:10.1074/jbc.M500831200
Dual mechanisms whereby a broken RNA end assists the catalysis of its repair by T4 RNA ligase 2.
Complete Appylation by RNL2 is possible in absence of Mg2+, but is slower.
Nucleic Acids Res. 2005 Jan 7;33(1):135-42. doi:10.1093/nar/gki149
Blondal T, Thorisdottir A, Unnsteinsdottir U, Hjorleifsdottir S, Aevarsson A, Ernstsson S, Fridjonsson OH, Skirnisdottir S, Wheat JO, Hermannsdottir AG, Sigurdsson ST, Hreggvidsson GO, Smith AV, Kristjansson JK.
Isolation and characterization of a thermostable RNA ligase 1 from a Thermus scotoductus bacteriophage TS2126 with good single-stranded DNA ligation properties.
Nucleic Acids Res. 2005 Jan 14;33(1):388-99 doi:10.1093/nar/gki174
Englert M, Beier H.
Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins.
Ligates 2'-3'P molecules to 5'OH. Has a broad substrate range.
Zhu H, Shuman S.
J Biol Chem. 2005 Jul 15;280(28):25973-81 doi:10.1074/jbc.M504002200
Novel 3′-ribonuclease and 3′-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D.
These activities depend on Mn2+, and could be used to generate a 3'rNOH or 3'rNp oligo.
EMBO Rep. 2006 Jan;7(1):59-65. doi:10.1038/sj.embor.7400576
Vengrova S, Dalgaard JZ.
The wild-type Schizosaccharomyces pombe mat1 imprint consists of two ribonucleotides.
Gu J, Lu H, Tippin B, Shimazaki N, Goodman MF, Lieber MR.
EMBO J. 2007 Feb 21;26(4):1010-23. doi:10.1038/sj.emboj.7601559
XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps.
FEBS J. 2005 Dec;272(23):5991-6000
Kuhn H, Frank-Kamenetskii MD.
Template-independent ligation of single-stranded DNA by T4 DNA ligase.
Nat Methods. 2015 Mar;12(3):251-7. doi: 10.1038/nmeth.3259
Koh KD, Balachander S, Hesselberth JR, Storici F.
Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA.
Larman HB, Scott ER, Wogan M, Oliveira G, Torkamani A, Schultz PG
Nucleic Acids Res. 2014 Oct 1;42(14):9146-57. doi: 10.1093/nar/gku636
Sensitive, multiplex and direct quantification of RNA sequences using a modified RASL assay.
J Biol Chem. 2003 Nov 7;278(45):43928-38 doi:10.1074/jbc.M307839200
Sawaya R, Schwer B, Shuman S.
Genetic and biochemical analysis of the functional domains of yeast tRNA ligase.
Sawaya R, Schwer B, Shuman S.
RNA. 2005 Jan;11(1):107-13. doi:10.1261/rna.7193705
Structure-function analysis of the yeast NAD+-dependent tRNA 2'-phosphotransferase Tpt1.
B. floridae RNA Ligase Forms a 2′-Phosphomonoester-3′,5′-Phosphodiester Junction.