in progressss
GC content heterogeneity
Two (out of 20) chromosomes in the genome of the unicellular green alga Ostreococcus tauri have a markedly different GC and transposable element content compared to the others. Derelle and coll., 2003. The same phenomeon has then been reported in Bathycoccus prasinos (Moreau and coll., 2012) and other species.
Chr4 in Polypedilum vanderplanki has lower GC content than the others (Yoshida et al., 2022), and it has been speculated that it could have been caused by DNA damage.
Yin Y, Fan H, Zhou B, Hu Y, Fan G, Wang J, Zhou F, Nie W, Zhang C, Liu L, Zhong Z, Zhu W, Liu G, Lin Z, Liu C, Zhou J, Huang G, Li Z, Yu J, Zhang Y, Yang Y, Zhuo B, Zhang B, Chang J, Qian H, Peng Y, Chen X, Chen L, Li Z, Zhou Q, Wang W, Wei F.
Nat Commun. 2021 Nov 25;12(1):6858. doi:10.1038/s41467-021-27091-0
Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer
Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S, Grimsley N, Van Bel M, Poulain J, Katinka M, Hohmann-Marriott MF, Piganeau G, Rouzé P, Da Silva C, Wincker P, Van de Peer Y, Vandepoele K.
Genome Biol. 2012 Aug 24;13(8):R74. doi:10.1186/gb-2012-13-8-r74
Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage.
Yoshida Y, Shaikhutdinov N, Kozlova O, Itoh M, Tagami M, Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Noma S, Cherkasov A, Gazizova G, Nasibullina A, Deviatiiarov R, Shagimardanova E, Ryabova A, Yamaguchi K, Bino T, Shigenobu S, Tokumoto S, Miyata Y, Cornette R, Yamada TG, Funahashi A, Tomita M, Gusev O, Kikawada T.
NAR Genom Bioinform. 2022 Apr 5;4(2):lqac029. doi:10.1093/nargab/lqac029
High quality genome assembly of the anhydrobiotic midge provides insights on a single chromosome-based emergence of extreme desiccation tolerance.
Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piégu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52. doi:10.1073/pnas.0604795103
Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features.
Kabir A, Ieda R, Hosoya S, Fujikawa D, Atsumi K, Tajima S, Nozawa A, Koyama T, Hirase S, Nakamura O, Kadota M, Nishimura O, Kuraku S, Nakamura Y, Kobayashi H, Toyoda A, Tasumi S, Kikuchi K.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2121469119. doi:10.1073/pnas.2121469119
Repeated translocation of a supergene underlying rapid sex chromosome turnover in Takifugu pufferfish.
Bredeson JV, Lyons JB, Oniyinde IO, Okereke NR, Kolade O, Nnabue I, Nwadili CO, Hřibová E, Parker M, Nwogha J, Shu S, Carlson J, Kariba R, Muthemba S, Knop K, Barton GJ, Sherwood AV, Lopez-Montes A, Asiedu R, Jamnadass R, Muchugi A, Goodstein D, Egesi CN, Featherston J, Asfaw A, Simpson GG, Doležel J, Hendre PS, Van Deynze A, Kumar PL, Obidiegwu JE, Bhattacharjee R, Rokhsar DS.
Nat Commun. 2022 Apr 14;13(1):2001. doi:10.1038/s41467-022-29114-w
Chromosome evolution and the genetic basis of agronomically important traits in greater yam.
Mathog D, Hochstrasser M, Gruenbaum Y, Saumweber H, Sedat J.
Nature. 1984 Mar 29-Apr 4;308(5958):414-21. doi:10.1038/308414a0
Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei.
Yamamoto K, Hamaji T, Kawai-Toyooka H, Matsuzaki R, Takahashi F, Nishimura Y, Kawachi M, Noguchi H, Minakuchi Y, Umen JG, Toyoda A, Nozaki H.
Proc Natl Acad Sci U S A. 2021 May 25;118(21):e2100712118. doi:10.1073/pnas.2100712118
Three genomes in the algal genus Volvox reveal the fate of a haploid sex-determining region after a transition to homothallism
Sergey Nurk, Brian P Walenz, Arang Rhie, Mitchell R Vollger, Glennis A Logsdon, Robert Grothe, Karen H Miga, Evan E Eichler, Adam M Phillippy, Sergey Koren
Genome Res. 2020 Sep;30(9):1291-1305. doi:10.1101/gr.263566.120
HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads
Payen C, Fischer G, Marck C, Proux C, Sherman DJ, Coppée JY, Johnston M, Dujon B, Neuvéglise C.
Genome Res. 2009 Oct;19(10):1710-21. doi:10.1101/gr.090605.108
Unusual composition of a yeast chromosome arm is associated with its delayed replication.
Transcription-dependent domain-scale three-dimensional genome organization in the dinoflagellate Breviolum minutum.
Marinov GK, Trevino AE, Xiang T, Kundaje A, Grossman AR, Greenleaf WJ.
Nat Genet. 2021 May;53(5):613-617. doi: 10.1038/s41588-021-00848-5.
Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum.
Nand A, Zhan Y, Salazar OR, Aranda M, Voolstra CR, Dekker J.
Nat Genet. 2021 May;53(5):618-629. doi: 10.1038/s41588-021-00841-y
Mudd AB, Bredeson JV, Baum R, Hockemeyer D, Rokhsar DS
Commun Biol. 2020 Sep 1;3(1):480. doi:10.1038/s42003-020-1096-9
Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution.
“During the ~4.9 million years since the divergence of M. muntjak and M. reevesi, the M. muntjak lineage experienced 26 fusions for a rate of ~5.3 changes per million years.” “M. muntjak and M. reevesi [...] genomes are locally very similar, with 98.5% identity in aligned regions and a nucleotide divergence of 0.0130 substitutions per site, based on fourfold degenerate positions.” “The pairwise alignment of the muntjac genomes contains 2.45 Gb of contig sequence [...] average sequence identity of 98.5%, excluding indels [...] In comparison, alignments of red deer, reindeer, and muntjacs to B. taurus contain 1.80–2.21 Gb of contig sequences with 92.7–93.2% average identity.” “The nucleotide and temporal divergence between the two muntjac species is comparable to the divergence between humans and chimpanzees. The observed chromosome dynamism in muntjacs, however, far exceeds the rate in the chimpanzee and human lineages” “we noted the maintenance of distinct Hi-C boundaries in several examples, such as the junction between the X and autosomal segments on MMU3_X circa 133 Mb. Other fusion sites, however, show no notable difference compared with the rest of the genome in M. muntjak. As expected, M. reevesi shows a clear distinction between intra- and inter-chromosome contacts, including across fusion sites in M. muntjak.”
Postma ED, Dashko S, van Breemen L, Taylor Parkins SK, van den Broek M, Daran JM, Daran-Lapujade P.
Nucleic Acids Res. 2021 Feb 22;49(3):1769-1783. doi:10.1093/nar/gkaa1167
A supernumerary designer chromosome for modular in vivo pathway assembly in Saccharomyces cerevisiae.
Cechova M, Vegesna R, Tomaszkiewicz M, Harris RS, Chen D, Rangavittal S, Medvedev P, Makova KD.
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26273-26280. doi:10.1073/pnas.2001749117
Dynamic evolution of great ape Y chromosomes.
“Unexpectedly, the rates of gene death were similar between ampliconic and X-degenerate genes.”
Mitter M, Gasser C, Takacs Z, Langer CCH, Tang W, Jessberger G, Beales CT, Neuner E, Ameres SL, Peters JM, Goloborodko A, Micura R, Gerlich DW.
Nature. 2020 Oct;586(7827):139-144. doi:10.1038/s41586-020-2744-4
Conformation of sister chromatids in the replicated human genome.
Rafati N, Chen J, Herpin A, Pettersson ME, Han F, Feng C, Wallerman O, Rubin CJ, Péron S, Cocco A, Larsson M, Trötschel C, Poetsch A, Korsching K, Bönigk W, Körschen HG, Berg F, Folkvord A, Kaupp UB, Schartl M, Andersson L.
Proc Natl Acad Sci U S A. 2020 Sep 16:202009925. doi:10.1073/pnas.2009925117
Reconstruction of the birth of a male sex chromosome present in Atlantic herring.
Ranz JM, Casals F, Ruiz A.
Genome Res. 2001 Feb;11(2):230-9. doi:10.1101/gr.162901
How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila.
Simakov O, Marlétaz F, Yue JX, O'Connell B, Jenkins J, Brandt A, Calef R, Tung CH, Huang TK, Schmutz J, Satoh N, Yu JK, Putnam NH, Green RE, Rokhsar DS.
Nat Ecol Evol. 2020 Jun;4(6):820-830. doi:10.1038/s41559-020-1156-z
Deeply conserved synteny resolves early events in vertebrate evolution.
Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, White MA.
Genome Biol. 2020 Jul 19;21(1):177. doi:10.1186/s13059-020-02097-x
Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution.
Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, Brooks S, Howe E, Porubsky D, Logsdon GA, Schneider VA, Potapova T, Wood J, Chow W, Armstrong J, Fredrickson J, Pak E, Tigyi K, Kremitzki M, Markovic C, Maduro V, Dutra A, Bouffard GG, Chang AM, Hansen NF, Wilfert AB, Thibaud-Nissen F, Schmitt AD, Belton JM, Selvaraj S, Dennis MY, Soto DC, Sahasrabudhe R, Kaya G, Quick J, Loman NJ, Holmes N, Loose M, Surti U, Risques RA, Lindsay TAG, Fulton R, Hall I, Paten B, Howe K, Timp W, Young A, Mullikin JC, Pevzner PA, Gerton JL, Sullivan BA, Eichler EE, Phillippy AM.
Nature. 2020 Jul 14. doi: 10.1038/s41586-020-2547-7.
Telomere-to-telomere assembly of a complete human X chromosome.
Wang J, Wurm Y, Nipitwattanaphon M, Riba-Grognuz O, Huang YC, Shoemaker D, Keller L.
Nature. 2013 Jan 31;493(7434):664-8. doi:10.1038/nature11832
A Y-like social chromosome causes alternative colony organization in fire ants.
Bracewell R, Tran A, Chatla K, Bachtrog D.
G3 (Bethesda). 2020 Mar 5;10(3):891-897. doi:10.1534/g3.119.400922
Chromosome-Level Assembly of Drosophila bifasciata Reveals Important Karyotypic Transition of the X Chromosome.
Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS.
Nature. 2008 Jun 19;453(7198):1064-71. doi:10.1038/nature06967
The amphioxus genome and the evolution of the chordate karyotype.
17 ancestral chordate chromosomes.
“We estimate that the haploid amphioxus genome contains 21,900 protein-coding loci. [...] The observed heterozygosity shows correlations at short distances that decay on scales greater than ∼1 kb, indicating extensive recombination in the population. [...] Wwe reconstructed the gene complements of 17 linkage groups (that is, proto-chromosomes) of the last common chordate ancestor. [...] This analysis shows that most of the human genome (112 segments spanning 2.68 Gb, or 95% of the euchromatic genome) was affected by large-scale duplication events on the vertebrate stem before the bony vertebrate radiation (that is, the teleost/tetrapod split), and that nearly all of the ancient chordate chromosomes were quadruplicated. [...] Allowing for a range of nearly parsimonious reconstructions of 2R, we estimate that the bony vertebrate ancestor had between 37 and 49 chromosomes.”
Berthelot C, Muffato M, Abecassis J, Roest Crollius H.
Cell Rep. 2015 Mar 24;10(11):1913-24. doi: 10.1016/j.celrep.2015.02.046
The 3D organization of chromatin explains evolutionary fragile genomic regions.
“We [...] reconstruct the ancestral gene order in the 95-million-year-old ancestral genome of Boreoeutheria, the last common ancestor of primates, rodents, and laurasiatherians. [...] This reconstructed genome was further annotated with respect to its intergenic regions [...] their lengths, GC content and their proportion of conserved non-coding sequence as defined by GERP. [...] We then identified evolutionary rearrangement breakpoints that have occurred in the human, mouse, dog, cow, and horse lineages. [...] We identified a total of 751 breakpoints, 20 of which correspond to independent breakpoint reuse. [...] The identified breakpoints show the typical characteristics of rearrangement breakpoints; i.e., they occur in GC-rich, gene-dense regions possessing lower proportions of conserved non-coding sequence. [...] Breakpoint events per intergene increase as a power law of intergene length rather than a proportionality law. [...] Ancestral intergenes with high CNE content have been disrupted by significantly fewer breakpoints than intergenes of similar length with lower CNE content. [...] Rpeated elements and recombination frequencies are distributed radically differently from breakpoints, eliminating them as potential candidates to explain the breakpoint pattern. [...] The density of open chromatin is similar to the pattern of breakpoints with the proportion of DNA in an open state decreasing as intergene size increases. [...] Simulating inversions in the human genome according to contact probability [...] rearrangements were allowed to occur only between open chromatin regions, using chromatin state profiles for different cell types published by the ENCODE consortium. Under this model, the simulated average number of breakpoints per intergene closely reproduces the relationship with intergene length observed in real data.”
Sacerdot C, Louis A, Bon C, Berthelot C, Roest Crollius H.
Genome Biol. 2018 Oct 17;19(1):166. doi:10.1186/s13059-018-1559-1
Chromosome evolution at the origin of the ancestral vertebrate genome.
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, Aiden EL.
Science. 2017 Apr 7;356(6333):92-95. doi:10.1126/science.aal3327
De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds.
Sun J, Chen C, Miyamoto N, Li R, Sigwart JD, Xu T, Sun Y, Wong WC, Ip JCH, Zhang W, Lan Y, Bissessur D, Watsuji TO, Watanabe HK, Takaki Y, Ikeo K, Fujii N, Yoshitake K, Qiu JW, Takai K, Qian PY.
Nat Commun. 2020 Apr 8;11(1):1657. doi: 10.1038/s41467-020-15522-3.
The Scaly-foot Snail genome and implications for the origins of biomineralised armour.
Meisel RP, Delclos PJ, Wexler JR.
BMC Biol. 2019 Dec 5;17(1):100. doi:10.1186/s12915-019-0721-x
The X chromosome of the German cockroach, Blattella germanica, is homologous to a fly X chromosome despite 400 million years divergence.
Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, Vadnala RN, Sun S, Siddharthan R, Tellgren-Roth C, Dawson TL Jnr, Heitman J, Sanyal K.
Elife. 2020 Jan 20;9. pii: e53944. doi: 10.7554/eLife.53944 doi:10.7554/eLife.53944
Loss of centromere function drives karyotype evolution in closely related Malassezia species.
Zoolog Sci. 2005 May;22(5):511-6 doi:10.2108/zsj.22.511
Shoguchi E, Kawashima T, Nishida-Umehara C, Matsuda Y, Satoh N.
Molecular cytogenetic characterization of Ciona intestinalis chromosomes.
Chen Z, Omori Y, Koren S, Shirokiya T, Kuroda T, Miyamoto A, Wada H, Fujiyama A, Toyoda A, Zhang S, Wolfsberg TG, Kawakami K, Phillippy AM; NISC Comparative Sequencing Program, Mullikin JC, Burgess SM.
Sci Adv. 2019 Jun 26;5(6):eaav0547. doi:10.1126/sciadv.aav0547
De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication.
Nature. 2012 Apr 11;485(7398):376-80. doi:10.1038/nature11082
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B.
Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Kuang YY, Zheng XH, Li CY, Li XM, Cao DC, Tong GX, Lv WH, Xu W, Zhou Y, Zhang XF, Sun ZP, Mahboob S, Al-Ghanim KA, Li JT, Sun XW.
Sci Rep. 2016 Oct 6;6:34849. doi:10.1038/srep34849
The genetic map of goldfish (Carassius auratus) provided insights to the divergent genome evolutions in the Cyprinidae family.
Linkage groups infered from RNA-seq data of 2 parents and > 70 offsprings.
Fradin H, Kiontke K, Zegar C, Gutwein M, Lucas J, Kovtun M, Corcoran DL, Baugh LR, Fitch DHA, Piano F, Gunsalus KC.
Curr Biol. 2017 Oct 9;27(19):2928-2939.e6. doi:10.1016/j.cub.2017.08.038
Genome Architecture and Evolution of a Unichromosomal Asexual Nematode.
Schaeffer SW
Genetics. 2018 Sep;210(1):3-13. doi:10.1534/genetics.118.301084
Muller "Elements" in Drosophila: How the Search for the Genetic Basis for Speciation Led to the Birth of Comparative Genomics.
Nat Genet. 2014 Jul;46(7):693-700. doi:10.1038/ng.3010
Foth BJ, Tsai IJ, Reid AJ, Bancroft AJ, Nichol S, Tracey A, Holroyd N, Cotton JA, Stanley EJ, Zarowiecki M, Liu JZ, Huckvale T, Cooper PJ, Grencis RK, Berriman M.
Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction.
Proc Natl Acad Sci U S A. 1917 Sep;3(9):555-8 doi:10.1073/pnas.3.9.555
Sturtevant AH
Genetic Factors Affecting the Strength of Linkage in Drosophila.
Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G.
Cell. 2012 Feb 3;148(3):458-72. doi:10.1016/j.cell.2012.01.010
Three-dimensional folding and functional organization principles of the Drosophila genome.
Stadler MR, Haines JE, Eisen MB.
Elife. 2017 Nov 17;6. pii: e29550. doi:10.7554/eLife.29550
Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo.
Catacchio CR, Maggiolini FAM, D'Addabbo P, Bitonto M, Capozzi O, Lepore Signorile M, Miroballo M, Archidiacono N, Eichler EE, Ventura M, Antonacci F.
Genome Res. 2018 Jun;28(6):910-920. doi:10.1101/gr.234831.118
Inversion variants in human and primate genomes.
Pettersson ME, Rochus CM, Han F, Chen J, Hill J, Wallerman O, Fan G, Hong X, Xu Q, Zhang H, Liu S, Liu X, Haggerty L, Hunt T, Martin FJ, Flicek P, Bunikis I, Folkvord A, Andersson L.
Genome Res. 2019 Nov;29(11):1919-1928. doi:10.1101/gr.253435.119
A chromosome-level assembly of the Atlantic herring genome-detection of a supergene and other signals of selection.
Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, Meyer TJ, Herrero J, Roos C, Aken B, Anaclerio F, Archidiacono N, Baker C, Barrell D, Batzer MA, Beal K, Blancher A, Bohrson CL, Brameier M, Campbell MS, Capozzi O, Casola C, Chiatante G, Cree A, Damert A, de Jong PJ, Dumas L, Fernandez-Callejo M, Flicek P, Fuchs NV, Gut I, Gut M, Hahn MW, Hernandez-Rodriguez J, Hillier LW, Hubley R, Ianc B, Izsvák Z, Jablonski NG, Johnstone LM, Karimpour-Fard A, Konkel MK, Kostka D, Lazar NH, Lee SL, Lewis LR, Liu Y, Locke DP, Mallick S, Mendez FL, Muffato M, Nazareth LV, Nevonen KA, O'Bleness M, Ochis C, Odom DT, Pollard KS, Quilez J, Reich D, Rocchi M, Schumann GG, Searle S, Sikela JM, Skollar G, Smit A, Sonmez K, ten Hallers B, Terhune E, Thomas GW, Ullmer B, Ventura M, Walker JA, Wall JD, Walter L, Ward MC, Wheelan SJ, Whelan CW, White S, Wilhelm LJ, Woerner AE, Yandell M, Zhu B, Hammer MF, Marques-Bonet T, Eichler EE, Fulton L, Fronick C, Muzny DM, Warren WC, Worley KC, Rogers J, Wilson RK, Gibbs RA.
Nature. 2014 Sep 11;513(7517):195-201. doi:10.1038/nature13679
Gibbon genome and the fast karyotype evolution of small apes.
Renschler G, Richard G, Valsecchi CIK, Toscano S, Arrigoni L, Ramírez F, Akhtar A.
Genes Dev. 2019 Oct 10. doi: 10.1101/gad.328971.119
Hi-C guided assemblies reveal conserved regulatory topologies on X and autosomes despite extensive genome shuffling.
“Hi-C data of D. melanogaster, D. virilis, and D. busckii embryos”
“D. virilis and D. busckii [...] cover ∼40 million years of evolution and multiple subgenera (Russo et al. 2013).”
“conserved sequences mostly reside on the same chromosomal arms”
“we defined synteny blocks (SBs), which are chains of conserved collinear regions that are used to identify and compare homologous regions between different species. On average, we find 20 synteny breakpoints per megabase (3726 and 3252 breakpoints in the D. melanogaster vs. D. virilis comparison, respectively, and 3340 and 2776 breakpoints in the D. melanogaster vs. D. busckii comparison, respectively), corresponding to about one breakpoint every six genes.”
“Approximately 75% of SBs stay within the A or B compartment and 25% switch between compartments. In general, about double the number of SBs lie within the A compartment than the B compartment.”
“many SB breakpoints overlap with TAD boundaries”
“To identify synteny blocks (SBs) we use LASTZ (Harris 2007) with the following parameters: “–gfextend –nochain –gapped,” which identifies local alignment blocks. We then chained blocks that are within 10-kb distance, have the same orientation, and contain at least four LASTZ-defined blocks. Chained results that were <4 kb or completely overlapped a bigger synteny block were removed.”
Science. 2017 Mar 10;355(6329). pii: eaaf4791. doi:10.1126/science.aaf4791
Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome.
Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ.
Nature. 2005 Sep 1;437(7055):94-100 doi:10.1038/nature04029
Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication.
Yue JX, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A, Coupland P, Warringer J, Lagomarsino MC, Fischer G, Durbin R, Liti G.
Nat Genet. 2017 Jun;49(6):913-924. doi:10.1038/ng.3847
Contrasting evolutionary genome dynamics between domesticated and wild yeasts.
Yeast subtelomeres accumulate structural variants.
“For each subtelomere, we located its proximal boundary on the basis of the sudden loss of synteny conservation and demarcated its distal boundary by the telomere-associated core X and Y′ elements”
“All previously defined essential genes in S. cerevisiae S288C28 fell into the chromosomal cores, whereas all previously described subtelomeric duplication blocks in S288C were fully enclosed in our defined S288C subtelomeres. Furthermore, the genes from our defined subtelomeres showed 36.6-fold higher CNV accumulation than those from the cores”
“subtelomeric one-to-one orthologs also showed significantly higher nonsynonymous-to-synonymous substitution rate ratio (dN/dS) than those from the cores in the S. cerevisiae–S. cerevisiae and S. cerevisiae–S. paradoxus comparisons”
“rapid evolution of subtelomeres can substantially alter the gene repertoire and generate novel recombinants with adaptive potential”
Ghavi-Helm Y, Jankowski A, Meiers S, Viales RR, Korbel JO, Furlong EEM.
Nat Genet. 2019 Aug;51(8):1272-1282. doi:10.1038/s41588-019-0462-3
Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression.
Zoolog Sci. 2004 Feb;21(2):153-7 doi:10.2108/zsj.21.153
Shoguchi E1, Ikuta T, Yoshizaki F, Satou Y, Satoh N, Asano K, Saiga H, Nishikata T.
Fluorescent in situ hybridization to ascidian chromosomes.
Genome Res. 2006 Feb;16(2):297-303 doi:10.1101/gr.4156606
Shoguchi E, Kawashima T, Satou Y, Hamaguchi M, Sin-I T, Kohara Y, Putnam N, Rokhsar DS, Satoh N.
Chromosomal mapping of 170 BAC clones in the ascidian Ciona intestinalis.
The short arm of chromosome 4, 5 and 6 contains rDNA clusters.
Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM.
Nature. 2008 Jul 24;454(7203):479-85. doi:10.1038/nature07135
High-resolution mapping of meiotic crossovers and non-crossovers in yeast.
Bioinformatics. 2014 Jun 15;30(12):i302-9. doi:10.1093/bioinformatics/btu280
Kolmogorov M, Raney B, Paten B, Pham S.
Ragout-a reference-assisted assembly tool for bacterial genomes.
Kolmogorov M, Armstrong J, Raney BJ, Streeter I, Dunn M, Yang F, Odom D, Flicek P, Keane TM, Thybert D, Paten B, Pham S.
Genome Res. 2018 Nov;28(11):1720-1732. doi:10.1101/gr.236273.118
Chromosome assembly of large and complex genomes using multiple references.
Science. 1970 Jun 12;168(3937):1364-6 doi:10.1126/science.168.3937.1364
Wurster DH, Benirschke K
Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number.
Genome Res. 2016 Mar;26(3):342-50. doi:10.1101/gr.193474.115
Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW, Haussler D, Rokhsar DS, Green RE.
Chromosome-scale shotgun assembly using an in vitro method for long-range linkage.