... in progress ...
Nematode chromosomes have been called “Nigon elements” by Tandonnet and coll, 2019.
C. inopinata
C. inopinata was discovered in 2018 to be the closest species to C. elegans despite stronger differences (compared with more distant species) in morphology and ecological niche (Kanzaki and coll., 2018).
C. inopinata travels from fig to fig on Ceratosolen pollinating wasps and is specialised on both its prefered fig and wasp (Woodruff and Phillips, 2018).
C. inopinata is larger than C. elegans but this difference is not explained by a different chromosome number or a higher number of cells (Woodruff, Willis and Phillips, 2018).
C. inopinata appears to have a longer life span that C. elegans, but this can be explained by the cost of reproduction, as virgin pseudo-female C. elegans also have a longer life span (Woodruff, Johnson and Phillips PC, 2019).
The C. inopinata genome is ~123 Mb and contains active transposons that may explain the increased genome size compared with C. elegans. Structural changes between both species are mainly intra-chromosomal (Kanzaki and coll., 2018).
Other nematodes
A phylogeny of 32 Caenorhabditis species shows [ (briggsae | nigoni) | (latens | remanei) ] | (elegans | inopinata) (Stevens and coll., 2019).
Diploscapter pachys has a single chromosome, that is still organised in ancestral domains homologous to the ones of other nematodes (Fradin and coll., 2019).
The genome of Halicephalobus mephisto is only 61.4 Mb (95% complete according to BUSCO and CEGMA) (Weinstein and coll., 2019).
The whipworms Trichuris trichiura and Trichuris muris have 3 chromosomes, as determined by a synteny comparison between two related species (Foth and coll., 2014).
In Meloidogyne incognita, which reproduces by mitotic parthenogenesis, the genome sequence is evloving towards effective haploidy (Abad and coll., 2008).
Bursaphelenchus okinawaensis has a genome of 70 Mb in 6 chromosomes of similar length. The Hi-C contact map shows strong interaction between the centre of all chromosomes (Sun and coll., 2020).
In Oscheius tipulae, there are subtelomeric extensions ranging from 4 to 133 kb that are present in germ line but absent in somatic cells (de la Rosa and coll., 2021).
“the genomes of C. elegans and C. briggsae are more highly rearranged than their outcrossing sister species, C. inopinata and C. nigoni (17.1% of neighboring genes are rearranged in the selfers compared with 15.0% in the outcrossers)” (Stevens and coll., 2022).
When comparing C. briggsae and C. nigoni, most of the introns and intergenic regions are not alignable. The aligned regions are ~90% identical (Ren and coll., 2018).
Ren X, Li R, Wei X, Bi Y, Ho VWS, Ding Q, Xu Z, Zhang Z, Hsieh CL, Young A, Zeng J, Liu X, Zhao Z.
Nucleic Acids Res. 2018 Feb 16;46(3):1295-1307. doi:10.1093/nar/gkx1277
Genomic basis of recombination suppression in the hybrid between Caenorhabditis briggsae and C. nigoni.
Tandonnet S, Koutsovoulos GD, Adams S, Cloarec D, Parihar M, Blaxter ML, Pires-daSilva A.
Chromosome-Wide Evolution and Sex Determination in the Three-Sexed Nematode Auanema rhodensis.
G3 (Bethesda). 2019 Apr 9;9(4):1211-1230. doi: 10.1534/g3.119.0011
Stevens L, Félix MA, Beltran T, Braendle C, Caurcel C, Fausett S, Fitch D, Frézal L, Gosse C, Kaur T, Kiontke K, Newton MD, Noble LM, Richaud A, Rockman MV, Sudhaus W, Blaxter M.
Evol Lett. 2019 Apr 2;3(2):217-236. doi:10.1002/evl3.110
Comparative genomics of 10 new Caenorhabditis species.
Stevens L, Moya ND, Tanny RE, Gibson SB, Tracey A, Na H, Chitrakar R, Dekker J, Walhout AJM, Baugh LR, Andersen EC.
Genome Biol Evol. 2022 Apr 10;14(4):evac042. doi:10.1093/gbe/evac042
Chromosome-Level Reference Genomes for Two Strains of Caenorhabditis briggsae: An Improved Platform for Comparative Genomics.
Doyle SR, Tracey A, Laing R, Holroyd N, Bartley D, Bazant W, Beasley H, Beech R, Britton C, Brooks K, Chaudhry U, Maitland K, Martinelli A, Noonan JD, Paulini M, Quail MA, Redman E, Rodgers FH, Sallé G, Shabbir MZ, Sankaranarayanan G, Wit J, Howe KL, Sargison N, Devaney E, Berriman M, Gilleard JS, Cotton JA.
Commun Biol. 2020 Nov 9;3(1):656. doi:10.1038/s42003-020-01377-3
Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm.
Gonzalez de la Rosa PM, Thomson M, Trivedi U, Tracey A, Tandonnet S, Blaxter M.
G3 (Bethesda). 2021 Jan 18;11(1):jkaa020. doi:10.1093/g3journal/jkaa020
A telomere-to-telomere assembly of Oscheius tipulae and the evolution of rhabditid nematode chromosomes.
Sun S, Shinya R, Dayi M, Yoshida A, Sternberg PW, Kikuchi T.
Microbiol Resour Announc. 2020 Oct 22;9(43):e01000-20. doi:10.1128/MRA.01000-20
Telomere-to-Telomere Genome Assembly of Bursaphelenchus okinawaensis Strain SH1.
Hinman AW, Yeh HY, Roelens B, Yamaya K, Woglar A, Bourbon HG, Chi P, Villeneuve AM.
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33):e2109306118. doi:10.1073/pnas.2109306118
_Caenorhabditis elegans+ DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks.
Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Ségurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P.
Nat Biotechnol. 2008 Aug;26(8):909-15. doi:10.1038/nbt.1482
Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita.
Woodruff GC, Johnson E, Phillips PC.
BMC Evol Biol. 2019 Mar 11;19(1):74. doi:10.1186/s12862-019-1388-1
A large close relative of C. elegans is slow-developing but not long-lived.
Evol Lett. 2018 Jul 16;2(4):427-441. doi:10.1002/evl3.67
Woodruff GC, Willis JH, Phillips PC.
Dramatic evolution of body length due to postembryonic changes in cell size in a newly discovered close relative of Caenorhabditis elegans
Nat Commun. 2018 Aug 10;9(1):3216. doi:10.1038/s41467-018-05712-5
Kanzaki N, Tsai IJ, Tanaka R, Hunt VL, Liu D, Tsuyama K, Maeda Y, Namai S, Kumagai R, Tracey A, Holroyd N, Doyle SR, Woodruff GC, Murase K, Kitazume H, Chai C, Akagi A, Panda O, Ke HM, Schroeder FC, Wang J, Berriman M, Sternberg PW, Sugimoto A, Kikuchi T.
Biology and genome of a newly discovered sibling species of Caenorhabditis elegans
Woodruff GC, Phillips PC.
BMC Ecol. 2018 Aug 21;18(1):26. doi: 10.1186/s12898-018-0182-z.
Field studies reveal a close relative of C. elegans thrives in the fresh figs of Ficus septica and disperses on its Ceratosolen pollinating wasps.
Fradin H, Kiontke K, Zegar C, Gutwein M, Lucas J, Kovtun M, Corcoran DL, Baugh LR, Fitch DHA, Piano F, Gunsalus KC.
Curr Biol. 2017 Oct 9;27(19):2928-2939.e6. doi:10.1016/j.cub.2017.08.038
Genome Architecture and Evolution of a Unichromosomal Asexual Nematode.
Weinstein DJ, Allen SE, Lau MCY, Erasmus M, Asalone KC, Walters-Conte K, Deikus G, Sebra R, Borgonie G, van Heerden E, Onstott TC, Bracht JR.
Nat Commun. 2019 Nov 21;10(1):5268. doi:10.1038/s41467-019-13245-8
The genome of a subterrestrial nematode reveals adaptations to heat
Nat Genet. 2014 Jul;46(7):693-700. doi:10.1038/ng.3010
Foth BJ, Tsai IJ, Reid AJ, Bancroft AJ, Nichol S, Tracey A, Holroyd N, Cotton JA, Stanley EJ, Zarowiecki M, Liu JZ, Huckvale T, Cooper PJ, Grencis RK, Berriman M.
Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction.