How to add contents to droplets ?
- In Agresti et al., 2005, small molecules mixed with EtOH or DMSO were added by vortexing.
- In Bernath et al. , 2005, nanodroplets were prepared with mineral oil, 7.5 % Span 80 and 2.5 % Tween 80, and incupated with the emulsion, with gentle mixing.
How to break the droplets ?
- In Nakano et al. , 2005, by centrifugation (oil: silicone; surfactant: Triton X-100 0.1%).
- In Agresti et al., 2005, by centrifugation in presence of diethyl ether (oil: mineral; surfactant: Triton X-100 0.1% and Span 80 4.5%).
- High salt:
- In Dielh et al. , 2006, by pipetting up and down in 100 mM NaCl, 1 % SDS, 1 % Triton X-100 and Tris (oil: mineral, surfactant: ABIL WE09).
- In Kojima et al. , 2005, by mixing with 1M NaCl, 5 mM Tris-HCl pH 8.0, 0.5 mM EDTA (oil: mineral; surfactant: Sun Soft No. 818SK).
- Extraction of beads with hexane:oil 1:1, in Levy et al. , 2005 (oil: mineral, surfactant: 5.5% Span 80, 0.5% Tween 80, 0.1 % Triton X-100).
Different kinds of surfactants:
- Span 80 4.5 % and Tween 80 0.5 % (oil: mineral; primary paper: Tawfik et al. , 1998, followed by many others, sometimes adding Triton X-100 and changing the concentrations).
- ABIL WE09 (polysiloxane–polycetyl–polyethylene glycol copolymer; primary paper: Dielh et al. , 2004)
- Sun Soft No. 818SK (polyglycerol esters of intersesterified ricinoleic acid; primary paper: Kojima et al. , 2005)
- DC 5225C Formulation Aid / DC 749 Fluid (Dow Chemical Co.) Margulies et al. , 2005
- 3% fluorosurfactant (RAN Biotechnologies) in Novec HFE-7500 / 0.015% Tween 80 for double emulsions in Masted and coll., 2018.
- 3% of Abil EM 180 or 4.5% Span 80/0.4% Tween 80/0.05% Triton X-100 were compared for ePCR by Terekhov and coll., 2020. “T-oil was less stable, displaying droplet coalescence after 25 cycles.” “ePCR clearly outperformed bulk PCR, reducing the number of reads with gross errors by twofold [and] resulted in a more uniform distribution of amplified sequences”
Reactive droplets:
- Illumination changing magnetic or electric properties of droplets (Yang et al., 2018).
Terekhov SS, Eliseev IE, Ovchinnikova LA, Kabilov MR, Prjibelski AD, Tupikin AE, Smirnov IV, Belogurov AA Jr, Severinov KV, Lomakin YA, Altman S, Gabibov AG.
Proc Natl Acad Sci U S A. 2020 Oct 21:202017138. doi:10.1073/pnas.2017138117.
Liquid drop of DNA libraries reveals total genome information.
Ackerman CM, Myhrvold C, Thakku SG, Freije CA, Metsky HC, Yang DK, Ye SH, Boehm CK, Kosoko-Thoroddsen TF, Kehe J, Nguyen TG, Carter A, Kulesa A, Barnes JR, Dugan VG, Hung DT, Blainey PC, Sabeti PC.
Nature. 2020 Jun;582(7811):277-282. doi:10.1038/s41586-020-2279-8
Massively multiplexed nucleic acid detection with Cas13.
Esben Bjoern Madsen, Thomas Kvist, Ida Hoijer, Adam Ameur, Marie Just Mikkelsen
bioRxiv, September 6, 2018.
Xdrop: targeted sequencing of long DNA molecules from low input samples using droplet sorting
Nature. 2018 Jan 18;553(7688):313-318. doi:10.1038/nature25137
Yang Z, Wei J, Sobolev YI, Grzybowski BA.
Systems of mechanized and reactive droplets powered by multi-responsive surfactants.
J Am Chem Soc. 2012 Mar 14;134(10):4983-9. doi:10.1021/ja300460p
Rossow T, Heyman JA, Ehrlicher AJ, Langhoff A, Weitz DA, Haag R, Seiffert S.
Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics.
Nat Biotechnol. 1998 Jul;16(7):652-6 doi:10.1038/nbt0798-652
Tawfik DS, Griffiths AD.
Man-made cell-like compartments for molecular evolution.
FEBS Lett. 1999 Aug 27;457(2):227-30.
Doi N, Yanagawa H.
STABLE: protein-DNA fusion system for screening of combinatorial protein libraries in vitro.
The gene product, fused to streptavidin, is bound to a biotinylated molecule in which it is encoded.
Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4552-7 doi:10.1073/pnas.071052198
Ghadessy FJ, Ong JL, Holliger P.
Directed evolution of polymerase function by compartmentalized self-replication.
FEBS Lett. 2002 Dec 18;532(3):455-8
Sepp A, Tawfik DS, Griffiths AD.
Microbead display by in vitro compartmentalisation: selection for binding using flow cytometry.
Nakano M, Komatsu J, Matsuura S, Takashima K, Katsura S, Mizuno A.
J Biotechnol. 2003 Apr 24;102(2):117-24.
Single-molecule PCR using water-in-oil emulsion.
Uses the Triton X-100 contained in the PCR buffer as a surfactant.
Nucleic Acids Res. 2003 Oct 1;31(19):e118
Yonezawa M, Doi N, Kawahashi Y, Higashinakagawa T, Yanagawa H.
DNA display for in vitro selection of diverse peptide libraries.
Bernath K, Hai M, Mastrobattista E, Griffiths AD, Magdassi S, Tawfik DS.
Anal Biochem. 2004 Feb 1;325(1):151-7
In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting.
Oil droplets containing water droplets (w/o/w) can be FACS sorted.
Protein Eng Des Sel. 2004 Jan;17(1):3-11 doi:10.1093/protein/gzh001
Cohen HM, Tawfik DS, Griffiths AD
Altering the sequence specificity of HaeIII methyltransferase by directed evolution using in vitro compartmentalization.
Nucleic Acids Res. 2004 Jul 6;32(12):e95 doi:10.1093/nar/gnh096
Doi N, Kumadaki S, Oishi Y, Matsumura N, Yanagawa H.
In vitro selection of restriction endonucleases by in vitro compartmentalization.
The cleaved DNA molecules are selected by filling of their ends with biotin-dUTP
Protein Eng Des Sel. 2004 Sep;17(9):699-707. Epub 2004 Nov 2.
Bertschinger J, Neri D.
Covalent DNA display as a novel tool for directed evolution of proteins in vitro.
J Mol Biol. 2005 Feb 4;345(5):1015-26. doi:10.1016/j.jmb.2004.11.017
Bernath K, Magdassi S, Tawfik DS.
Directed evolution of protein inhibitors of DNA-nucleases by in vitro compartmentalization (IVC) and nano-droplet delivery.
Selection pressure can be increased by reducing the volume of the spheres.
RNA. 2005 Oct;11(10):1555-62. doi:10.1261/rna.2121705
Levy M, Griswold KE, Ellington AD.
Direct selection of trans-acting ligase ribozymes by in vitro compartmentalization.
Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW.
Nat Methods. 2006 Feb;3(2):95-7. doi:10.1038/nmeth850
BEAMing up for detection and quantification of rare sequence variants.
RCA amplification of DNA coupled to beads, followed by single-base extension and flow sorting.
Agresti JJ, Kelly BT, Jäschke A, Griffiths AD.
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16170-5 doi:10.1073/pnas.0503733102
Selection of ribozymes that catalyse multiple-turnover Diels-Alder cycloadditions by using in vitro compartmentalization.
Small molecules mixed with EtOH or DMSO were added by vortexing.
J Mol Biol. 2005 Nov 25;354(2):212-9. Epub 2005 Oct 3 doi:10.1016/j.jmb.2005.09.051
Sepp A, Choo Y.
Cell-free selection of zinc finger DNA-binding proteins using in vitro compartmentalization.
Cell. 2015 May 21;161(5):1187-1201. doi:10.1016/j.cell.2015.04.044
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW.
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.
Nat Commun. 2016 Jun 29;7:11784. doi: 10.1038/ncomms11784.
Lan F, Haliburton JR, Yuan A, Abate AR.
Droplet barcoding for massively parallel single-molecule deep sequencing.
Barcodes provided in a third molecule, integrated by PCR assembly.
Pellegrino M, Sciambi A, Yates JL, Mast JD, Silver C, Eastburn DJ
BMC Genomics. 2016 May 17;17(1):361. doi:10.1186/s12864-016-2694-2
RNA-Seq following PCR-based sorting reveals rare cell transcriptional signatures.
Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, Stephanopoulos G.
Nat Biotechnol. 2014 May;32(5):473-8. doi: 10.1038/nbt.2857
Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption.
Screening genomic clones detected a tandem expansion of the XYLA gene.
Huang X, Li M, Green DC, Williams DS, Patil AJ, Mann S.
Nat Commun. 2013;4:2239. doi: 10.1038/ncomms3239
Interfacial assembly of protein-polymer nano-conjugates into stimulus-responsive biomimetic protocells.
Chabert M, Viovy JL.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3191-6.
Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells.
Droplets containing a cell are larger than empty ones, allowing passive separation by shear flow.
Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14195-200.
Droplet microfluidic technology for single-cell high-throughput screening.
Droplet fusion to screen color-coded drug droplet libraries. RainDance technology.
Anal Chem. 2012 Apr 17;84(8):3599-606.
Zhang H, Jenkins G, Zou Y, Zhu Z, Yang CJ.
Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics.
Köster S, Angilè FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA.
Lab Chip. 2008 Jul;8(7):1110-5. Epub 2008 May 23.
Drop-based microfluidic devices for encapsulation of single cells.
Modular system where the units are connected from outlet to inlet.
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14746-51. Epub 2011 Aug 26.
Observation of spatial propagation of amyloid assembly from single nuclei.
Knowles TP, White DA, Abate AR, Agresti JJ, Cohen SI, Sperling RA, De Genst EJ, Dobson CM, Weitz DA.
Proc Natl Acad Sci U S A. 2012 Apr 25.
Boitard L, Cottinet D, Kleinschmitt C, Bremond N, Baudry J, Yvert G, Bibette J.
Monitoring single-cell bioenergetics via the coarsening of emulsion droplets.
Single yeast cells consume linearly glucose over time, and polyploid cells consume more.
Lab Chip. 2008 Oct;8(10):1632-9.
Biocompatible surfactants for water-in-fluorocarbon emulsions.
Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angilè FE, Schmitz CH, Köster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA.
Non-ionic; compatible with in vitro translation and cell growth.
Lab Chip. 2011 Nov 21;11(22):3838-45.
1-Million droplet array with wide-field fluorescence imaging for digital PCR.
Hatch AC, Fisher JS, Tovar AR, Hsieh AT, Lin R, Pentoney SL, Yang DL, Lee AP.
Anal Chem. 2011 Nov 15;83(22):8816-20. Epub 2011 Oct 17.
Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil.
Chen F, Zhan Y, Geng T, Lian H, Xu P, Lu C.
Gu SQ, Zhang YX, Zhu Y, Du WB, Yao B, Fang Q.
Anal Chem. 2011 Oct 1;83(19):7570-6. doi:10.1021/ac201678g
Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.
Protocol carried out by sequential passage of droplets on immobilized beads.
Nucleic Acids Res. 2005 Oct 6;33(17):e150 doi:10.1093/nar/gni143
Kojima T, Takei Y, Ohtsuka M, Kawarasaki Y, Yamane T, Nakano H.
PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets.
J Biosci Bioeng. 2005 Mar;99(3):293-5. doi:10.1263/jbb.99.293
Nakano M, Nakai N, Kurita H, Komatsu J, Takashima K, Katsura S, Mizuno A.
Single-molecule reverse transcription polymerase chain reaction using water-in-oil emulsion.
Protein Eng Des Sel. 2004 Mar;17(3):201-4 doi:10.1093/protein/gzh025
Ghadessy FJ, Holliger P.
A novel emulsion mixture for in vitro compartmentalization of transcription and translation in the rabbit reticulocyte system.
Nature. 2005 Sep 15;437(7057):376-80. doi:10.1038/nature03959
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM.
Genome sequencing in microfabricated high-density picolitre reactors.
Nat Methods. 2006 Jul;3(7):545-50 doi:10.1038/nmeth896
Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD.
Amplification of complex gene libraries by emulsion PCR. Protects the templates frome size bias by isolating them from each other.
Nat Methods. 2006 Jul;3(7):551-9 doi:10.1038/nmeth898
Diehl F, Li M, He Y, Kinzler KW, Vogelstein B, Dressman D
BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions.
Recommends (in Box 1) a double-biotin to avoid breaking the complexes at high temperatures.
Nat Methods. 2006 Jul;3(7):561-70 doi:10.1038/nmeth897
Miller OJ, Bernath K, Agresti JJ, Amitai G, Kelly BT, Mastrobattista E, Taly V, Magdassi S, Tawfik DS, Griffiths AD.
Directed evolution by in vitro compartmentalization.
Emulsions are prepared in 96-well plates by vortexing with tungsten beads.
Anal Chem. 2010 Apr 15;82(8):3183-90.
High-performance single cell genetic analysis using microfluidic emulsion generator arrays.
Zeng Y, Novak R, Shuga J, Smith MT, Mathies RA.
In case the target cell is rare, raises the density up to 100 cells per droplet.