Work in progress
A phylogeny of ~150 Drosophila species using > 2000 BUSCO genes: Suvorov et al., 2022.
pseudoobscura
Analysis of Cox2 sequences of Drosophila species by Beckenbach, Wei and Liu (1993) are most compatible with a speciation of D. melanogaster and D. pseudoobscura ~35 My ago. Sequence divergence between D. mel. and members of the D. obscura species group is in average of 11.4 %.
A study of Adh genes, nuclear 18S rRNA and mitochondrial DNA (Russo, Takezaki and Nei (1995)) suggests that D. mel and D. pseudoobscura diverged 24.9 +/- 2.88 My ago, based on the assumption that D. picticornis and D. silvestris diverged 5.1 My ago.
Variations of the gene order in the chromosome 3 of D. Pseudoobscura were reported by Dobzhansky and Sturtevant in 1938, who could describe them as a network of successive large-scale inversions. They also showed that the gene order of the X2 chromosome of D. miranda is homologoues to the one of the hypothetical ancestor of chromosome 3 in D. Pseudoobscura.
"Race B" of D. pseudoobscura is now called "D. persimilis" (Dobzhansky and Epling, 1944). For some time it was thought that there are no morphological differences, but it was later found that the size of their penis differs (Rizki MT, 1951).
Other
The ITS2 sequence of Drosophila species diverged at the speed of 1.2 % per million year (Schlötterer and coll., 1994).
12 Drosophila genomes were sequenced and compared by the Drosophila 12 Genomes Consortium (2007).
Hi-C scaffolding and genome comparison between D. virilis and D. buskii shows one synteny break every 6 genes in average (Renschler and coll., 2019).
See also Muller elements.
Other papers
D. melanogaster's development time course at different temperatures was fitted to the Arrhenius law in Crapse and coll., 2021.
Ectopic recombination of a Galileo element may have caused a recent large-scale inversion in D. buzzati (Delprat and coll, 2009).
Drosophila polytene chromosomes are in Rabl confirmation in interphase: chromosome arms form independent topological domains, centromeres cluster on the nuclear envelopped, and telomeres tend to be found on the opposite direction (Mathog and coll., 1984).
Hsu SK, Lai WY, Novak J, Lehner F, Jakšić AM, Versace E, Schlötterer C.
Genome Biol. 2024 May 28;25(1):141. doi:10.1186/s13059-024-03285-9
Reproductive isolation arises during laboratory adaptation to a novel hot environment.
Ranz JM, Maurin D, Chan YS, von Grotthuss M, Hillier LW, Roote J, Ashburner M, Bergman CM.
PLoS Biol. 2007 Jun;5(6):e152. doi:10.1371/journal.pbio.0050152
Principles of genome evolution in the Drosophila melanogaster species group.
Suvorov A, Kim BY, Wang J, Armstrong EE, Peede D, D'Agostino ERR, Price DK, Waddell P, Lang M, Courtier-Orgogozo V, David JR, Petrov D, Matute DR, Schrider DR, Comeault AA.
Curr Biol. 2022 Jan 10;32(1):111-123.e5. doi:10.1016/j.cub.2021.10.052
Widespread introgression across a phylogeny of 155 Drosophila genomes.
Ranz JM, González PM, Su RN, Bedford SJ, Abreu-Goodger C, Markow T.
Proc Biol Sci. 2022 Jan 26;289(1967):20212183. doi:10.1098/rspb.2021.2183
Multiscale analysis of the randomization limits of the chromosomal gene organization between Lepidoptera and Diptera.
Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, Gelbart WM.
Genetics. 2008 Jul;179(3):1657-80. doi:10.1534/genetics.107.086108
Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes.
Mathog D, Hochstrasser M, Gruenbaum Y, Saumweber H, Sedat J.
Nature. 1984 Mar 29-Apr 4;308(5958):414-21. doi:10.1038/308414a0
Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei.
Delprat A, Negre B, Puig M, Ruiz A.
PLoS One. 2009 Nov 18;4(11):e7883. doi:10.1371/journal.pone.0007883
The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination.
Theodosius Dobzhansky and Carl Epling
Carnegie Institution of Washington publicatino 554, Washington, D. C., March 31st, 1944
Contributions to the Genetics, Taxonomy, and Ecology of Drosophila pseudoobscura and its relatives.
“It is certain that if any kind of structural difference had been known between D. pseudoobscura and D. persimilis, they would have been classed as species from the start. Calling them races, and designating them by the letters A and B instead of by Latin names, was an attempt to appease conservative taxonomists who continue to adhere to the purely morphological concepts of species and race. Such a course is neither scientifically consistent nor practically sound. The species is the stage in the process of evolutionary divergence at which an array of populations once actually interbreeding or capable of interbreeding has become split into two or more reproductively isolated arrays. Species exist in nature regardless of whether we can or cannot distinguish them by their structural characters. There is no doubt that the great majority of animal and plant species differ structurally, and that they can be conveniently, and in most cases readily, recognized and delimited by their morphology alone. But it does not follow that any and all species are recognizable by their externally visible structures.”
Machado CA, Haselkorn TS, Noor MA.
Genetics. 2007 Mar;175(3):1289-306. doi:10.1534/genetics.106.064758
Evaluation of the genomic extent of effects of fixed inversion differences on intraspecific variation and interspecific gene flow in Drosophila pseudoobscura and D. persimilis.
Rizki MT
Proc Natl Acad Sci U S A. 1951 Mar;37(3):156-9. doi:10.1073/pnas.37.3.156
Morphological differences between two sibling species; Drosophila pseudoobscura and Drosophila persimilis.
Dobzhansky T, Sturtevant AH
Genetics. 1938 Jan;23(1):28-64. doi:10.1093/genetics/23.1.28
Inversions in the Chromosomes of Drosophila Pseudoobscura.
Crapse J, Pappireddi N, Gupta M, Shvartsman SY, Wieschaus E, Wühr M.
Mol Syst Biol. 2021 Aug;17(8):e9895. doi: 10.15252/msb.20209895
Arrhenius equation for developmental processes.
Drosophila 12 Genomes Consortium, Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh ND, Abad JP, Abt DN, Adryan B, Aguade M, Akashi H, Anderson WW, Aquadro CF, Ardell DH, Arguello R, Artieri CG, Barbash DA, Barker D, Barsanti P, Batterham P, Batzoglou S, Begun D, Bhutkar A, Blanco E, Bosak SA, Bradley RK, Brand AD, Brent MR, Brooks AN, Brown RH, Butlin RK, Caggese C, Calvi BR, Bernardo de Carvalho A, Caspi A, Castrezana S, Celniker SE, Chang JL, Chapple C, Chatterji S, Chinwalla A, Civetta A, Clifton SW, Comeron JM, Costello JC, Coyne JA, Daub J, David RG, Delcher AL, Delehaunty K, Do CB, Ebling H, Edwards K, Eickbush T, Evans JD, Filipski A, Findeiss S, Freyhult E, Fulton L, Fulton R, Garcia AC, Gardiner A, Garfield DA, Garvin BE, Gibson G, Gilbert D, Gnerre S, Godfrey J, Good R, Gotea V, Gravely B, Greenberg AJ, Griffiths-Jones S, Gross S, Guigo R, Gustafson EA, Haerty W, Hahn MW, Halligan DL, Halpern AL, Halter GM, Han MV, Heger A, Hillier L, Hinrichs AS, Holmes I, Hoskins RA, Hubisz MJ, Hultmark D, Huntley MA, Jaffe DB, Jagadeeshan S, Jeck WR, Johnson J, Jones CD, Jordan WC, Karpen GH, Kataoka E, Keightley PD, Kheradpour P, Kirkness EF, Koerich LB, Kristiansen K, Kudrna D, Kulathinal RJ, Kumar S, Kwok R, Lander E, Langley CH, Lapoint R, Lazzaro BP, Lee SJ, Levesque L, Li R, Lin CF, Lin MF, Lindblad-Toh K, Llopart A, Long M, Low L, Lozovsky E, Lu J, Luo M, Machado CA, Makalowski W, Marzo M, Matsuda M, Matzkin L, McAllister B, McBride CS, McKernan B, McKernan K, Mendez-Lago M, Minx P, Mollenhauer MU, Montooth K, Mount SM, Mu X, Myers E, Negre B, Newfeld S, Nielsen R, Noor MA, O'Grady P, Pachter L, Papaceit M, Parisi MJ, Parisi M, Parts L, Pedersen JS, Pesole G, Phillippy AM, Ponting CP, Pop M, Porcelli D, Powell JR, Prohaska S, Pruitt K, Puig M, Quesneville H, Ram KR, Rand D, Rasmussen MD, Reed LK, Reenan R, Reily A, Remington KA, Rieger TT, Ritchie MG, Robin C, Rogers YH, Rohde C, Rozas J, Rubenfield MJ, Ruiz A, Russo S, Salzberg SL, Sanchez-Gracia A, Saranga DJ, Sato H, Schaeffer SW, Schatz MC, Schlenke T, Schwartz R, Segarra C, Singh RS, Sirot L, Sirota M, Sisneros NB, Smith CD, Smith TF, Spieth J, Stage DE, Stark A, Stephan W, Strausberg RL, Strempel S, Sturgill D, Sutton G, Sutton GG, Tao W, Teichmann S, Tobari YN, Tomimura Y, Tsolas JM, Valente VL, Venter E, Venter JC, Vicario S, Vieira FG, Vilella AJ, Villasante A, Walenz B, Wang J, Wasserman M, Watts T, Wilson D, Wilson RK, Wing RA, Wolfner MF, Wong A, Wong GK, Wu CI, Wu G, Yamamoto D, Yang HP, Yang SP, Yorke JA, Yoshida K, Zdobnov E, Zhang P, Zhang Y, Zimin AV, Baldwin J, Abdouelleil A, Abdulkadir J, Abebe A, Abera B, Abreu J, Acer SC, Aftuck L, Alexander A, An P, Anderson E, Anderson S, Arachi H, Azer M, Bachantsang P, Barry A, Bayul T, Berlin A, Bessette D, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Bourzgui I, Brown A, Cahill P, Channer S, Cheshatsang Y, Chuda L, Citroen M, Collymore A, Cooke P, Costello M, D'Aco K, Daza R, De Haan G, DeGray S, DeMaso C, Dhargay N, Dooley K, Dooley E, Doricent M, Dorje P, Dorjee K, Dupes A, Elong R, Falk J, Farina A, Faro S, Ferguson D, Fisher S, Foley CD, Franke A, Friedrich D, Gadbois L, Gearin G, Gearin CR, Giannoukos G, Goode T, Graham J, Grandbois E, Grewal S, Gyaltsen K, Hafez N, Hagos B, Hall J, Henson C, Hollinger A, Honan T, Huard MD, Hughes L, Hurhula B, Husby ME, Kamat A, Kanga B, Kashin S, Khazanovich D, Kisner P, Lance K, Lara M, Lee W, Lennon N, Letendre F, LeVine R, Lipovsky A, Liu X, Liu J, Liu S, Lokyitsang T, Lokyitsang Y, Lubonja R, Lui A, MacDonald P, Magnisalis V, Maru K, Matthews C, McCusker W, McDonough S, Mehta T, Meldrim J, Meneus L, Mihai O, Mihalev A, Mihova T, Mittelman R, Mlenga V, Montmayeur A, Mulrain L, Navidi A, Naylor J, Negash T, Nguyen T, Nguyen N, Nicol R, Norbu C, Norbu N, Novod N, O'Neill B, Osman S, Markiewicz E, Oyono OL, Patti C, Phunkhang P, Pierre F, Priest M, Raghuraman S, Rege F, Reyes R, Rise C, Rogov P, Ross K, Ryan E, Settipalli S, Shea T, Sherpa N, Shi L, Shih D, Sparrow T, Spaulding J, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Strader C, Tesfaye S, Thomson T, Thoulutsang Y, Thoulutsang D, Topham K, Topping I, Tsamla T, Vassiliev H, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Young G, Yu Q, Zembek L, Zhong D, Zimmer A, Zwirko Z, Jaffe DB, Alvarez P, Brockman W, Butler J, Chin C, Gnerre S, Grabherr M, Kleber M, Mauceli E, MacCallum I.
Nature. 2007 Nov 8;450(7167):203-18. doi:10.1038/nature06341
Evolution of genes and genomes on the Drosophila phylogeny.
Schlötterer C, Hauser MT, von Haeseler A, Tautz D.
Mol Biol Evol. 1994 May;11(3):513-22. doi:10.1093/oxfordjournals.molbev.a040131
Comparative evolutionary analysis of rDNA ITS regions in Drosophila.
Chakraborty M, Chang CH, Khost DE, Vedanayagam J, Adrion JR, Liao Y, Montooth KL, Meiklejohn CD, Larracuente AM, Emerson JJ.
Genome Res. 2021 Feb 9. doi:10.1101/gr.263442.120
Evolution of genome structure in the Drosophila simulans species complex.
Fuqua T, Jordan J, van Breugel ME, Halavatyi A, Tischer C, Polidoro P, Abe N, Tsai A, Mann RS, Stern DL, Crocker J.
Nature. 2020 Nov;587(7833):235-239. doi:10.1038/s41586-020-2816-5
Dense and pleiotropic regulatory information in a developmental enhancer
Ranz JM, Casals F, Ruiz A.
Genome Res. 2001 Feb;11(2):230-9. doi:10.1101/gr.162901
How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila.
Bracewell R, Tran A, Chatla K, Bachtrog D.
G3 (Bethesda). 2020 Mar 5;10(3):891-897. doi:10.1534/g3.119.400922
Chromosome-Level Assembly of Drosophila bifasciata Reveals Important Karyotypic Transition of the X Chromosome.
Schneider I.
J Embryol Exp Morphol. 1972 Apr;27(2):353-65.
Cell lines derived from late embryonic stages of Drosophila melanogaster.
Echalier G, Ohanessian A.
C R Acad Hebd Seances Acad Sci D. 1969 Mar 31;268(13):1771-3.
https://gallica.bnf.fr/ark:/12148/bpt6k62969219/f623.image
Spontaneous transformation after multiple months of culture.
Schaeffer SW
Genetics. 2018 Sep;210(1):3-13. doi:10.1534/genetics.118.301084
Muller "Elements" in Drosophila: How the Search for the Genetic Basis for Speciation Led to the Birth of Comparative Genomics.
Proc Natl Acad Sci U S A. 1917 Sep;3(9):555-8 doi:10.1073/pnas.3.9.555
Sturtevant AH
Genetic Factors Affecting the Strength of Linkage in Drosophila.
Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G.
Cell. 2012 Feb 3;148(3):458-72. doi:10.1016/j.cell.2012.01.010
Three-dimensional folding and functional organization principles of the Drosophila genome.
Stadler MR, Haines JE, Eisen MB.
Elife. 2017 Nov 17;6. pii: e29550. doi:10.7554/eLife.29550
Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo.
Russo CA, Takezaki N, Nei M.
Mol Biol Evol. 1995 May;12(3):391-404 doi:10.1093/oxfordjournals.molbev.a040214
Molecular phylogeny and divergence times of drosophilid species.
Beckenbach AT, Wei YW, Liu H.
Mol Biol Evol. 1993 May;10(3):619-34 doi:10.1093/oxfordjournals.molbev.a040034
Relationships in the Drosophila obscura species group, inferred from mitochondrial cytochrome oxidase II sequences.
Ghavi-Helm Y, Jankowski A, Meiers S, Viales RR, Korbel JO, Furlong EEM.
Nat Genet. 2019 Aug;51(8):1272-1282. doi:10.1038/s41588-019-0462-3
Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression.
Long E, Evans C, Chaston J, Udall JA.
G3 (Bethesda). 2018 Oct 3;8(10):3247-3253. doi:10.1534/g3.118.200631
Genomic Structural Variations Within Five Continental Populations of Drosophila melanogaster.
Compares breakpoint position with a +-3 bp tolerance. Uses Assemblytics.
Frith MC, Kawaguchi R.
Genome Biol. 2015 May 21;16:106. doi:10.1186/s13059-015-0670-9
Split-alignment of genomes finds orthologies more accurately.
Genes Dev. 1988 Jun;2(6):754-65.
Beyer AL, Osheim YN.
Splice site selection, rate of splicing, and alternative splicing on nascent transcripts.
G3 (Bethesda). 2018 Aug 7. pii: g3.200160.2018. doi:10.1534/g3.118.200160
Miller DE, Staber C, Zeitlinger J, Hawley RS.
Highly Contiguous Genome Assemblies of 15 Drosophila Species Generated Using Nanopore Sequencing.
Sci Rep. 2018 Jun 22;8(1):9500. doi:10.1038/s41598-018-27805-3
Lajbner Z, Pnini R, Camus MF, Miller J, Dowling DK.
Experimental evidence that thermal selection shapes mitochondrial genome evolution.
G3 (Bethesda). 2018 Jul 17. pii: g3.200162.2018. doi:10.1534/g3.118.200162
Solares EA, Chakraborty M, Miller DE, Kalsow S, Hall K, Perera AG, Emerson JJ, Hawley RS.
Rapid Low-Cost Assembly of the Drosophila melanogaster Reference Genome Using Low-Coverage, Long-Read Sequencing.
Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE
Genes Dev. 2015 Oct 15;29(20):2168-82. doi:10.1101/gad.270421.115
Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins.
Also describes a vector for circularisation of arbitrary exon sequences.
Phadnis N, Baker EP, Cooper JC, Frizzell KA, Hsieh E, de la Cruz AF, Shendure J, Kitzman JO, Malik HS.
Science. 2015 Dec 18;350(6267):1552-5. doi:10.1126/science.aac7504
An essential cell cycle regulation gene causes hybrid inviability in Drosophila.
Xu H, Sepúlveda LA, Figard L, Sokac AM, Golding I.
Nat Methods. 2015 Aug;12(8):739-742. doi:10.1038/nmeth.3446
Combining protein and mRNA quantification to decipher transcriptional regulation.
Southall TD, Davidson CM, Miller C, Carr A, Brand AH.
Dev Cell. 2014 Mar 31;28(6):685-96. doi:10.1016/j.devcel.2014.01.030
Dedifferentiation of Neurons Precedes Tumor Formation in lola Mutants.
Lola-N isoform prevents neurons from re-entering the cell cycle.
Salzler HR, Tatomer DC, Malek PY, McDaniel SL, Orlando AN, Marzluff WF, Duronio RJ.
Dev Cell. 2013 Mar 25;24(6):623-34. doi: 10.1016/j.devcel.2013.02.014.
A Sequence in the Drosophila H3-H4 Promoter Triggers Histone Locus Body Assembly and Biosynthesis of Replication-Coupled Histone mRNAs.
Parry TJ, Theisen JW, Hsu JY, Wang YL, Corcoran DL, Eustice M, Ohler U, Kadonaga JT.
Genes Dev. 2010 Sep 15;24(18):2013-8. doi:10.1101/gad.1951110
The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery.